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Article Information Abstract

Received 5 May 2025 The post-genomic and post-pandemic era has brought about a paradigm shift in the realm of vaccinology, which has

triggered a transition from empirical whole-pathogen strategies to rational information-driven molecular design. The

Accepted 25 June 2025 sudden and spectacular rise of messenger RNA (mRNA) vaccines is a disruptive prophylactic technology, whose efficacy
Available online 30 has been unequivocally proven on a global platform during the COVID-19 pandemic. The unprecedented success of mRNA
June 2025 vaccines is a direct result of the strategic convergence of synthetic biology, structural virology, and immunoengineering.

As a form of programmable biological software, mRNA vaccines provide a precise set of genetic instructions for the in vivo

production of antigens, thereby inducing a coordinated humoral and cellular immune response. The review article will

cover the multi-disciplinary underpinnings of the technology, its translation from bench to global platform, and the future
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frontiers that will be enabled by the strategic integration of artificial intelligence and synthetic biology, which will firmly
establish mRNA vaccinology as a cornerstone of 21st-century medicine.

Introduction

he course of history of viral vaccines has been from live-

attenuated and inactivated whole virus preparations to
recombinant subunit and viral vector approaches [1], [2].
Although these conventional approaches have been
monumental successes in controlling endemic diseases, they
may inherently have limitations in dealing with rapidly
emerging and antigenically diverse viruses. The development
periods may be long, and the approaches may not be effective
in inducing potent cytotoxic T-cell immune responses
necessary for the clearance of intracellular viruses [3], [4].

Nucleic acid-based vaccines, which were first envisioned
decades ago, have now come to fill this void. Of these, mRNA
vaccines have had a spectacular success story in clinical trials
[5]. In essence, these vaccines mark a transition from the
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delivery of the antigen itself to the delivery of the information
for its production. The synthetic mRNA carrying the gene for a
viral antigen is encapsulated and administered to host cells,
which are then hijacked to use the host's own translational
apparatus to produce the antigen in situ [6]. This process of
endogenous production recreates the essential features of a
natural viral infection, including the endogenous processing
and presentation of the antigen on both MHC Class I and II
molecules, thus inducing a balanced immune response [7]. This
review aims to illuminate the interdisciplinary convergence
that has made this success possible, including the Virological
intelligence that guides rational antigen design, the biotech
advances that have made mRNA stable and targeted, and the
immunological fundamentals that define efficacy and memory.
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We also examine the translational imperatives that currently
define this technology and speculate on future directions for
this programmable technology in the medical toolbox.

Virological Intelligence Driving mRNA Vaccine Design

Building a successful mRNA vaccine is a process that predates
any recent chemistry, as it involves a profound understanding
of the virus itself. Virology provides the necessary blueprint.

mRNA Vaccine Design Process
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Figure 1.0 Development procedure of mRNA vaccine

% Viral Genomics as the Blueprint for Antigen
Engineering

But as sequencing is now becoming fast, inexpensive, and
scalable, it is possible to paint the complete antigenic map for a
novel virus threat in mere days. And the SARS-CoV-2
experience taught us this lesson all too well: the genome
sequence was made public worldwide in January 2020, and soon
virtual designs for vaccine antigens against the spike protein
could be produced [8], [9]. Then came structural virology and
cryo-electron microscopy to provide us with atomic-level
blueprints. These reveal the native, pre-fusion conformation of
the surface proteins and help to guide antigen design to display
the key neutralizing epitopes while excluding or suppressing
the immunodominant, non-neutralizing, or even infection-
triggering parts [10].

2

% Conserved vs. Variable Viral Targets

The Breadth vs. Precision Paradox "The fitness costs imposed
on a virus that replicates in a human host for a lifetime rather
than a short period are significant," explains John Fleming. "The
virus has to have a minimal impact on its host to survive. We

need to target not just the virus itself but also its need to survive
in its host." [11].

"The biggest problem in antiviral vaccine design is that viruses
change rapidly. We aim to target regions that are conserved and
functionally constrained to control immune escape. In
coronaviruses like SARS-CoV-2, the receptor-binding domain
or, more successfully now, the prefusion-stabilized full-length
S protein is now targeted predominantly, although its high
mutation rate in newer strains is a concern [12]. In influenza
viruses, targeting the conserved stalk domain of hemagglutinin
and neuraminidase is poised to transition towards achieving
'universal' vaccine coverage targeting strain-specific head
regions [13]. In HIV and HCV infections, high envelope protein
sequence variability has led to exploring sites for targeting
‘cryptic’ or 'conserved' epitopes or 'mosaic’ sequences to
increase broadness. In flavivirus infections like dengue or Zika
virus infections, 'engineering of antigens that stabilize E protein
'dimers' in a prefusion conformation to induce [14], [15].

K3

% Antigen Conformation and Viral Entry
Mechanisms

The shape of an antigen is inevitably linked with function and
immune system perception [16]. The switch to prefusion-
stabilized SARS-CoV-2 spike with the S-2P mutations was a
turning point, as it locks the spike into an open conformation,
preventing reversion to the final, post-fusion shape and
maintaining it in a metastable state recognizable to potent
neutralizing antibodies [17]. Similarly, understanding the pH-
dependent fusion strategy of the influenza virus HA or the
mechanisms by which conserved HIV Env epitopes remain
hidden could inform the design of vaccine targets based on the
shape of the molecules [18].

The objective is to display the viral ‘Achilles’ heel’, or the
machinery of entry, in the most susceptible, antibody-like
accessible shape.

Immune Escape Potential
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Viral Target
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Regions Regions

Viral Targets for mRNA Vaccine
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Figure 2.0. Viral Targets and the regions on which vaccines act
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mRNA Engineering: From Instability to Clinical
Robustness

The journey of mRNA from a notoriously unstable compound
to a useful therapeutic agent is one of thoughtful molecular
design.

< Nucleoside Modifications and Trans

One critical milestone was achieved with the incorporation of
naturally occurring modified nucleosides such as
pseudouridine (W) and its derivative N1-methylpseudouridine
(m1¥), initiated by Katalin Kariké and Drew Weissman [19].
This shifted the mRNA from being recognized as a foreign
entity by the immune system. Modified nucleosides are critical
in suppressing the recognition of central innate sensors, Toll-
like receptor 7 (TLR7) and Protein Kinase R (PKR), which cause
reduced translation due to triggering of Type I interferon. This
concept of "immune evasion" is crucial as it increases both the
translation efficiency of mRNA and its stability. Codon
optimization techniques are not only focused on increasing
translation speed but also work towards optimizing protein
folding through correctly optimized translation rates that avoid
ribosomal stalling as well as incorrect nucleoside incorporation,
which reduces CPD G content and triggers Toll-Like Receptor

9 [20], [21].

mRNA Engineering Milestones

Incorporation of pseudouridine
and N1-methylpseudouridine
shifted mRNA from being
recognized as foreign by the
immune system.
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Figure 3.0 illustrates key mRNA engineering strategies for evading immune detection,
enhancing stability, and optimizing translation
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«  Structural Elements of Synthetic mRNA: A Finely
Tuned Cassette

A synthetic mRNA vaccine construct comprises a carefully
designed cassette of essential regulatory elements: [22]. 5' Cap:
Cap analogs such as Clean Cap for co-transcriptional capping
are necessary for efficient capping of the mRNA transcript.
Capping is a critical process for translation initiation, mRNA
stability, and general recognition of 'self versus 'non-self
mRNA. Untranslated Regions (UTR): The 5’ and 3' UTRs are
engineered often using coding sequences like a- or B-globin
genes with high transcript levels in humans to regulate the half-
life and localization functions and the feasibility of translation
[23]. Poly(A) Tail: This defined tail of 100-150 nucleotides

https://doi.org/10.63954/67v24t98

protects from exonuclease digestion and in addition to the cap,
enhances translation. It is a measurement of quality to be of
specific length [24]. Alternative Platforms: There is self-
amplifying RNA (saRNA) with the alphavirus genome. It has
both the replicase and the antigen [25]. This allows it to be
amplified at the cellular level and express a high level of
antigen. Circular RNAs are extremely stable because they do
not have free ends [26].

K3

% Quality Control in mRNA Production

It is In vitro transcription can produce byproducts that
stimulate the immune system and include double-stranded
RNA, particularly in RNA transcripts produced by in vitro
transcription [27]. These molecules are potent activators of
pattern-recognition receptors such as RIG-I and MDA5 and the
protein kinase PKR and strongly induce interferon. Hence,
purification techniques such as HPLC and cellulose filtration
are required. Purified RNA is characterized by consistency, high
purity, predictable pharmacokinetics, and a favorable safety
profile [28].

Lipid Nanoparticles as Artificial Viral Mimics

Without a delivery mechanism, unprotected mRNA would
degrade quickly and not be absorbed efficiently. It was the
discovery of LNPs that provided the crucial carrier to make
mRNA a realistic treatment.

The contemporary LNP typically comprises four components:
ionizable cationic lipid (playing the central role in the release
of the particle from the endosome), phospholipid (helping
lipid), cholesterol (for the stability and fluidity of the
membrane), and PEGylated lipid (regulating the particle size
and preventing opsonization) [29]. Once taken up through the
endocytosis process by the cell, the ionizable lipid, being
positively charged in the endosomal environment, triggers the
destabilization of the endosomal membrane, ensuring the
release of the mRNA into the cellular cytoplasm. This release
process represents the primary pathogen for low efficacy [30].
It has been found through biodistribution analysis that the
intramuscular injection of the LNP-mRNA complex primarily
accumulates at the injection site and draining lymph nodes and,
importantly, a considerable amount at the liver site. This
targeting of the liver can be attributed to the apolipoprotein E
binding and can significantly affect the choice of antigen and
evaluation of hepatotoxicity [31].

The moment LNPs come into contact with bodily fluid, they get
masked by the constantly changing layer of adsorbed proteins
and form a “protein corona.” The protein corona itself becomes
the biological identity of the particles, which determines the
fate and the type of immune reaction the particles trigger [32].
It may, therefore, affect the rate or occurrence of reactions such
as fever, chills, and muscle aches, which occur with the mRNA-
LNP vaccine, a fraction of which is contributed by the innate
immune cells, monocytes and neutrophils, which the RNPs
trigger as an intrinsic adjuvant [33].
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Figure 4.0 illustrates the structure of a lipid nanoparticle (LNP) and its stepwise endocytic
delivery process to release mRNA into the cytoplasm for protein synthesis.

Biodegradable Lipids: New ionizable lipids that have ester
bonds, which allow them to biodegrade easily in the body.

Innate Immune Sensing: Friend or Foe?

The relationship between the mRNA-LNP vaccine and the
innate immune system is a matter of finding a balance: you
want it to be active enough to induce a robust response, but not
too active to cause harm.

< Pattern Recognition Receptors and mRNA
Vaccines

Our own immune protection is dependent on a repertoire of
pattern recognition receptors, or PRRs. mRNA vaccines activate
multiple such receptors: TLR3 (double-stranded-RNA) from
endosomes, TLR7/8 (single-stranded RNA), or cytoplasmic
sensors like RIG-I/MDAj5 (dsRNA or specific RNAs) [34]. Upon
stimulation, the pathways activate NF-kB/IRF signaling
pathways to produce type-I interferons, pro-inflammatory
mediators like IL-6/TNF-a. As such, reactogenicity (pain/fever)
triggers via local/general inflammation is achieved. Most
importantly, however, “danger signals” are generated for
dendritic cell priming and T-cell activation for full immune
response activation [35].

< Balancing Innate Activation and Antigen
Expression

The challenge lies in finding a balance here. Too much of the
interferon response can lead to a suppression of the translation
of the encoded antigen and hence reduced immunogenicity
[36]. Methods such as nucleoside modification and purification
are largely intended for a modulation of these responses and a
shift from a strong antiviral response to a stimulatory one. The
lipid nanoparticle part itself can be considered a kind of
adjuvant. The idea here is that there should be a balance
maintained between a stimulatory innate response and a
reduced toxic effect and reduced production of antigen [37].

% How Systems Immunology

Also, advanced analyses of high-dimensional data, such as
transcriptomics, proteomics, and metabolomics, of the early
phase following vaccinations are currently revealing
immunological profiles associated with the magnitude and
quality of subsequent adaptive immunity [38]. Thus, early peaks
of specific cytokines and interferon-stimulated genes are
associated with high levels of antibody responding to
vaccinations. Such profiles could serve as predictive markers of
vaccinations in individuals or populations [39].

Adaptive Immune Programming by mRNA Vaccines

Finally, the success of any vaccine resides in its capability to
invoke robust and persistent protective immune responses. The
mRNA-LNP-based vaccines are highly successful in this respect.

K3

« B Cell Responses and Germinal Center

Dynamics "mRNA-LNP vaccines elicited highly vigorous and
protracted germinal center responses in draining lymph nodes."
These germinal centers are the sites for the improvement of the
receptor affinity of the B cells by somatic hypermutation and
selection for affinity maturation [40]. In SARS-CoV-2 studies,
the germinal center response remained protracted for months,
which led to the development of memory B cells with high
affinity and class-switched commitment, as well as long-lived
plasma cells that migrate into the bone marrow for sustained
antibody production. The quality, which refers to affinity,
potency, and breadth of reactivity, depends on the "final
antigen shape delivered [41].

% CD4"and CD8" T Cell Polarization

One of the most advantageous aspects of the mRNA LNPs
approach is its remarkable ability to induce CD4+ T helper cells
and, more importantly, CD8+ cytotoxic T lymphocytes (CTLs)
[42]. Because the antigen is being expressed directly in the
cytoplasm of the host cells, it follows naturally that this will be
taken up by the MHC I antenna, thereby priming the CD8+ T
lymphocytes. Immunogens formulated on this platform will
preferentially invoke a Thi response in CD4+ lymphocytes,
which responds with IFN-gamma and IL-2, an effective
response for combatting viral pathogens. This CTL response
will be vital for eliminating infected host cells, conferring
protection supernumerary to antibody-mediated responses, to
shield against disease and even cross-protection for variants
refractory to humoral responses [43].

2

% Immune Memory and Durability

Memory B/T cells elicited by mRNA vaccines can persist for
many months or even years [44]. However, sterilizing immunity
at mucosal surfaces, such as the NP surface, can wane with
reduced antibody titers, particularly secretory IgA. This is why
vaccine efficacy against infection or transmission usually wanes
with time, although it remains protective against severe
infection due to the long-lasting memory B/T cells and bone
marrow plasma cells [45].
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mRNA Vaccines in Light of Viral Evolution

Viruses evolve. Either the vaccine has to adapt or stay a step
ahead. It is its adaptability that makes the mRNA platform so
clever.

3

% Antigenic Drift, Shift, and Vaccine

As the mRNA vaccines are modular, the main task in the
upgrade is simply the exchange of the genetic sequence in the
DNA template [46]. This enabled the “rapid design and
development of the vaccines” and occurred quickly for Omicron
boosters. However, it can also be noted that the major
drawback of such “pandemic chasing” involves the
“surveillance, detection, preparation, and revaccination,” which
may not always be quicker for viruses that “multiply at the
speed of lightning [47].”

« Variant-Proof and Pan-Viral Vaccine
Scientists are now seeking proactive methods [48]:

Conserved Epitope Focus: Designing antigens that draw
attention to mutationally constrained and functionally crucial
areas (such as RBD stem and HA stalk).

Mosaic Antigens: Leveraging computation to build one
protein sequence by combining different strains or variants by
trying to lure with common characters. This is a prominent
concept for universal influenza and HIV vaccines [49].

Multivalent Constructs: Using one mRNA that encodes
multiple different antigens or multiple mRNAs to offer broader
protection.

« RNA Virus Surveillance by mRNA Analyses

mRNA virus surveillance It can also strictly be integrated with
global genomic surveillance systems. Once the concerning
sequences are recognized, they will instantly be input into the
vaccine designing software as well as produced on a massive
scale in a few weeks [50]. This will help provide a strong "test to
deploy”/“prototype to respond” strategy for pandemic
preparedness with a library of prototype vaccines to enter
clinical trials against the pandemic pathogen candidates [51].

Clinical Translation: Lessons from COVID-19 and Beyond

The COVID-19 pandemic suddenly became a huge reality show
lab that stacked up a huge volume of clinical data.

0,

% Efficacy, Safety, and Real

Phase III studies for BNT162b2 and mRNA-1273 demonstrated a
95% efficacy rate in protecting from symptomatic COVID-19
[52], [53]. Real-world efficacy studies with millions of
participants indicated a robust defense mechanism against
hospitalization, death, and severe cases of COVID-19 due to
even Delta variants. The efficacy in preventing infection and
transmission was high initially but reduced over time due to
immune-evaded variants such as Omicron [54]. The primary
safety concern has been myocarditis and pericarditis. These
conditions are a rare occurrence and are self-limiting; however,
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it has been found that the benefits clearly outweigh the side
effects [55].

+ Special Populations

Immunocompromised Persons: Patients with solid organ
transplants, B-cell-depleting agents, or severe HIV infection
may have reduced immunity, necessitating increased amounts,
additional booster shots, or pre-exposure prophylactic
antibodies [56].

Pediatric & Geriatric Groups: Responses at both age extremes
are high; however, levels of reactogenicity are variable. Seniors
achieve a slight decrease in maximal antibody levels;
nevertheless, they achieve a significant benefit in protection
against severe disease. In children, high responses are induced;
some may have a higher relative neutralizing antibody titer [57].

« Comparative Effectiveness vs. Other Platforms

Direct head-to-head comparisons are difficult. Generally,
mRNA vaccines are expected to induce higher levels of
neutralizing antibodies compared with adenovirus or protein
subunit vaccines. Immune responses to the generated antigens
are robust, but details of these vary. Durability, cross-reactivity
with variants, or interactions of various boosters are some areas
that are currently being actively researched, with various
studies indicating that more robust immunity can be achieved
with a booster [58].

Manufacturing, Equity, and Global Deployment
Challenges While scientific success is necessary, it must
also be complemented by logistics and ethics to bring
benefits to the world.

K3

% Cold Chain and Stability Innovations

The earlier versions of the mRNA-based COVID-19 vaccines
also called for ultra-cold chain storage at temperatures of -20°C
to -80°C [59]. The current research and development are
showing positive outcomes, with the development of the next-
generation lipid nanoparticles having improved thermostability
and lyophilization techniques for freeze-drying that can
facilitate storage of the mRNA-based vaccines at 2-8°C or even
room temperature [60].

K3

« Decentralized & Modular Manufacturing

One strong aspect is the completely synthetic process using
cell-free technology. It is easily scalable and amenable to
modular regional facilities with standardized equipment and
protocols. It is easily scalable and amenable to modular regional
facilities with standardized equipment and protocols. It is easily
scalable and amenable to modular regional facilities with
standardized equipment and protocols. It is easily scalable and
amenable to modular regional facilities with standardized
equipment and protocols [61].

K3

+« Ethical and geopolitical considerations

The pandemic has exposed the fault lines in access to vaccines
and was further aggravated by the onset of vaccine nationalism,
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export curbs, and IP disputes [62]. Although mRNA technology
has the genuine promise of equitable access because of its
manufacture ability, it is necessary to ensure that the promise
is fulfilled. Initiatives such as the mRNA technology transfer
hub announced at the WHO headquarters in South Africa are
the key to making the revolution inclusive [63].

Beyond Prevention: Expanding the Functional Scope of
mRNA Vaccines

The platform also goes beyond viral disease prevention by
vaccine products. There are already trials for its potential use in
treating disease: clinical trials are being carried out for mRNA-
therapeutic vaccines targeting chronic infections such as HIV,
HBV, and Herpesviruses, as well as cancer, including
personalized Neoantigen vaccines targeted to individual
tumors [64]. The rapid replication capability also means
personalization envisages individual cancer vaccines ready to
target specific tumor mutations discovered weeks ago, for
instance. In pandemic outbreaks, there can also be “on-
demand” vaccines formulated against a zoonotic disease newly
discovered in a pandemic spot area [65].

Moreover, there may be the ability to prevent spillover events
using the concept of One Health. This may include the
vaccination of animal reservoirs or “intermediate hosts” against
viruses with a high spillover probability using LNP species-
specific formulations to halt pandemics in their tracks [66].

Future Horizons: Artificial Intelligence, Synthetic Biology,
and Predictive Vaccinology

The future age is all about integrated digital technology. Just
imagine:

Al-assisted antigen discovery: Machine learning algorithms
have the potential to predict protein structures, model antigen
and antibody  binding  interactions, rank  the
immunodominance hierarchy, and design optimal antigen
sequences [67].

Digital twins of the immune system: Thus, by integrating
multi-omics profiles in people, “digital twins” of the immune
system could predict how different vaccine candidates would
work and could be used to virtually screen and tailor vaccines
to individuals [68].

Self-containing vaccine ecosystems: with the aid of Al, the
capacity to generate vaccine candidates through robotics and
micro-factories could potentially be used to develop closed
systems that switch from preparation for general infection
protection to the production of candidate vaccines in the face
of a pandemic threat within a short period, in terms of days [67].

Conclusions and Perspectives

mRNA vaccines have transformed the paradigm that exists for
shielding individuals against the threat of viruses. They
represent the dawn of a new era in vaccinology that appears to
be becoming an exact science. It has been less than two years
since this brilliant idea has evolved to become a lifesaving

device that reached all corners of the planet. It is astounding to
think that this is all the result of virology and immunology
working together in perfect harmony.

Nevertheless, a set of big questions persists. We should define
exactly distribution pathways of lipid nanoparticle carriers
within a body and their fate in order to discover what
constitutes a basis for a strong mucosal immunity and identify
a marker of protection rather than a neutralizing antibody for
complex viruses. The dream about a universal vaccine resistant
to variants and covering a wide set of viral families continues.

Going forward, science must demand both improved and
stronger platforms but also a commitment to ethics and equity
in access to technology. Integration with discovery using Al and
global surveillance will lead to developing and enhancing a
strong preparedness platform against pandemics in the world.
It is a critical moment in veterinary and human medicine when
“mRNA vaccinology is not just a new technology it is a platform
technology with great potential to protect future generations
against future pandemics and to provide life-saving therapies
against chronic diseases.
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