

Wah Academia Journal of Health and Nutrition

Journal of Health and Nutrition

Homepage: https://wajhn.com/index.php/journal

Original Article

Integrating Nutrition and Mental Health: Mechanistic Pathways, Clinical Evidence, and Public Health Policy Implications

Salwa AL Majali^{a*}, Mahsa Ebadi^b, Zeliha Selamoglu^{cı-2} and Abdol Ghaffar Ebadi^{d*}

- ^a College of Education, Humanities and Social Sciences, Al Ain University, Abu Dhabi, United Arab Emirates
- b Department of Psychology, Jo.C., Islamic azad University, Jouybar, Iran
- ^{C1} Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Turkey
- C2 Khoja Akhmet Yassawi International Kazakh-Turkish University, Faculty of Sciences, Department of Biology, Turkestan, Kazakhstan
- d Department of Agriculture, Jo.C., Islamic azad University, Jouybar, Iran

Article Information

Received 3 May 2025

Accepted 12 June 2025

Available online 30 June 2025

Keywords: nutrition, mental health, gut-brain axis, dietary interventions, public health policy

Abstract

Mounting evidence reveals a critical intersection of mental health and nutrition, with dietary consumption and nutrient availability influencing cognitive function, mood, and risk for psychiatric illness. This review takes the field a step further by integrating mechanistic pathways, clinical trial data, and public health policy implications into a single framework that differs from earlier reviews. Mechanistically, nutrition affects neuroinflammation, oxidative stress, neurotransmitter synthesis, and the gut-brain axis. Key nutrients—omega-3 fatty acids, B-vitamins, minerals, and polyphenols—sustain neuronal integrity and modulate stress, whereas diets high in processed foods and added sugars make the individual more vulnerable to depression and anxiety. Clinical trials offer proof that dietary quality interventions, specifically Mediterranean-style or nutrient-dense diets, improve mental health outcomes, particularly in vulnerable populations. Importantly, nutrition-based interventions can complement psychiatric treatments and enhance prevention. Policy-level integration, including mental health-specific dietary guidelines and regionally relevant implementation protocols, has the potential to substantially reduce the global disease burden. Research priorities are posited in the form of longitudinal studies, mechanistic trials, and precision nutrition. By establishing nutrition as a preventable risk factor for mental health, this review insists on its inclusion in evidence-based clinical practice and public health policy worldwide.

Introduction

Mental illness is a global and burgeoning public health issue. As estimated by the World Health Organization, nearly one in eight people throughout the globe experience a mental disorder, such as depression, anxiety, or cognitive impairment, which contributes importantly to morbidity, disability, and socioeconomic burden. Such disorders reduce productivity, increase health costs, and harm social support systems. Despite pharmacological and psychotherapeutic innovation, prevalence rates remain high, and preventive and complementary strategies minimizing risk and promoting mental well-being are becoming ever more essential [1–3].

Nutrition is a basic but commonly neglected determinant of mental health. Nutrients such as omega-3 fatty acids, B-vitamins, minerals, and antioxidants play critical roles in neurotransmitter synthesis, neuroplasticity, and the regulation of neuroinflammation and oxidative stress. Dietary patterns rich in fruits, vegetables, whole grains, legumes, and

healthy fats—such as the Mediterranean diet—have been consistently linked with reduced risk of depression and anxiety. Conversely, high intake of processed food, added sugar, and saturated fat has been linked to poorer mental health status. The gut–brain axis, referring to bidirectional communication between the gastrointestinal tract and central nervous system, also explains how nutrition influences emotional and cognitive control through modulation of the gut microbiota [4–6].

Beyond biochemical processes, dietary interventions are increasingly recognized as viable components of mental health management. Interventions based on lifestyle and including nutritional optimization have shown improvement in mood, cognition, and resilience to stress, with implications that diet-based interventions can be beneficial adjuncts to conventional therapy. However, most of the reviews hitherto have addressed mechanistic or clinical aspects separately. The

https://doi.org/10.63954/trsy2e55

novelty of this review is the integration of mechanistic understanding, clinical trial results, and policy implications into a unified perspective. By identifying methodological strengths and limitations of current evidence, noting research gaps, and considering policy relevance in various regions, this paper aims to inform policymakers and health practitioners alike on the preventive and therapeutic potential of nutrition in mental disorders worldwide [7].

Biological Mechanisms Linking Nutrition and Mental Health

Nutrition plays a fundamental role in mental health via interlinked biological mechanisms. There is emerging evidence for the involvement of the gut-brain axis, inflammatory and oxidative stress pathways, neurotransmitter synthesis, and hormonal regulation in transmitting dietary effects on cognition, mood, and resilience to stress. Clarification of these mechanisms not only strengthens biological plausibility but also provides a scientific rationale for nutritional interventions in the prevention and treatment of psychiatric disorders [8]. Importantly, most of the mechanistic data are still derived from small-scale or cross-sectional studies, emphasizing the need for replication in larger and more heterogeneous populations.

❖ Gut-Brain Axis and Microbiota Modulation

The gut-brain axis is a bidirectional communication system linking the gastrointestinal tract and central nervous system through neural, endocrine, and immune mechanisms. Diet significantly impacts the gut microbiota, with the production of neuroactive metabolites such as short-chain fatty acids (SCFAs), tryptophan metabolites, and gamma-aminobutyric acid (GABA) all modulating mood, cognition, and stress response [9]. Dysbiosis—driven often by high-fat or low-fiber diets—is consistently associated with greater depression, anxiety, and cognitive decline. However, much of these findings are on the basis of observational studies; controlled clinical trials of microbiota-directed therapies are still limited. Table 1 presents dietary components that influence gut health, inflammation, and oxidative stress, along with their neuropsychiatric repercussions [10].

❖ Inflammation and Oxidative Stress Pathways

Chronic low-grade inflammation and oxidative stress are key mediators of neuropsychiatric disorders. Diets that are rich in refined carbohydrates, trans fat, and ultra-processed foods enhance pro-inflammatory cytokines (e.g., IL-6, TNF- α) and reactive oxygen species (ROS), which impair synaptic plasticity and neurogenesis [11]. Conversely, antioxidant and polyphenol-rich foods such as berries, green tea, and nuts attenuate inflammatory cascades and protect neuronal integrity [12]. While there is biological plausibility, most human studies are short-term and heterogeneous in design, making it impossible to ascertain causality.

Neurotransmitter Synthesis and Nutrient Cofactors

Neurotransmitter synthesis requires specific amino acids and micronutrients. For example, serotonin synthesis depends on tryptophan with vitamin B6, folate, and magnesium as cofactors, while dopamine synthesis is tyrosine and B-vitamin dependent [13–14]. Deficiency in these nutrients disrupts these pathways, causing depression, anxiety, and cognitive impairment. While mechanistic links are consistent, human studies are challenged by dietary measurement error and between-individual variability in nutrient metabolism. Table 2 shows an overview of nutrients involved in neurotransmitter synthesis and hypothalamic-pituitary-adrenal (HPA) axis regulation.

❖ Hormonal Control and Response to Stress

Nutrition also affects hormonal pathways, in particular the HPA axis. Diets high in sugar and low in micronutrients dysregulate this system, leading to chronically elevated cortisol, anxiety, and impaired cognition [15]. Micronutrients such as magnesium, zinc, and omega-3 fatty acids regulate HPA activity, foster stress resilience, and stabilize mood [16]. Whilst promising, most evidence comes from small interventional studies, and findings between populations are inconsistent. Additional longitudinal and region-specific research is needed.

Table 1. Nutritional Factors Modulating Gut-Brain Axis, Inflammation, and Oxidative Stress [17]

Dietary Component	Mechanism	Mental Health Impact	Sources
Fiber & Prebiotics	Modulates gut microbiota; increases SCFA production	Reduces anxiety, improves mood	Whole grains, legumes, fruits
Omega-3 Fatty Acids	Anti-inflammatory; supports neuronal membrane integrity	Reduces depression, improves cognition	Fatty fish, flaxseed, walnuts
Polyphenols	Antioxidant; anti- inflammatory	Improves cognitive function and resilience	Berries, green tea, cocoa
Probiotics	Probiotics Restores microbial balance		Yogurt, kefir, fermented vegetables
Ultra-processed foods	Promotes inflammation & dysbiosis	Increases risk of depression & cognitive decline	Sugary drinks, fried snacks

Table 2. Nutrients Involved in Neurotransmitter Synthesis and Hormonal Regulation [18]

Nutrient	Neurotransmitter / Hormonal Pathway	Mechanism	Sources
Tryptophan	Serotonin	Precursor for serotonin synthesis	Turkey, eggs, soy, nuts
Tyrosine	Dopamine & norepinephrine	Precursor for catecholamines	Cheese, chicken, almonds
Vitamin B6	Serotonin & dopamine synthesis cofactor	Supports enzyme activity for neurotransmitter production	Poultry, bananas, fortified cereals
Folate	Neurotransmitter metabolism	Supports methylation of neurotransmitters	Leafy greens, legumes
Magnesium	HPA axis modulation	Reduces cortisol, promotes relaxation	Nuts, seeds, whole grains
Zinc	Zinc Neurotransmission & stress response		Meat, legumes, pumpkin seeds
Omega-3 Fatty Acids HPA axis & anti- inflammatory		Supports neuronal health, reduces stress	Fatty fish, flaxseed, chia seeds

These pathways collectively demonstrate the biological plausibility for nutritional interventions in mental health, connecting molecular biology with clinical translatability. Nevertheless, the field has important challenges to overcome: (i) reliance on observational or small-scale data, (ii) lack of replication across heterogeneous geographic regions and

alternate patterns of diet (e.g., African or Middle Eastern diets), and (iii) lack of longitudinal mechanistic trials. Bridging these gaps will be essential to proceed from correlation to causation and to create culturally relevant interventions.

Major Nutrients and Eating Habits

❖ Vitamins and Minerals Affecting Mental State

Various micronutrients and fatty acids have been consistently implicated in mental health outcomes through their effects on neurotransmitter synthesis, neuroprotection, inflammation. Omega-3 fatty acids, particularly EPA and DHA, are integral to neuronal membrane fluidity, synaptic plasticity, and modulation of neuroinflammation. Higher intake is generally found to reduce depressive symptoms and retard cognitive impairment, although evidence across randomized controlled trials (RCTs) is mixed to some degree owing to heterogeneity in dosage, trial duration, and recruited populations [19]. B vitamins (B6, B12, and folate) act as cofactors in neurotransmitter metabolism and one-carbon methylation reactions that impact directly serotonin, dopamine, and norepinephrine production. Deficiencies in vitamins are strongly associated with depression, although supplementation trials have mixed results depending on the baseline status of nutrients [20].

Vitamin D regulates neurotrophic factors and the hypothalamic-pituitary-adrenal axis. Observational data show deficiency increases risk of depression and anxiety but disagreement from studies intervention prevailshighlighting a critical research gap for dose-response relationships. Magnesium and zinc regulate NMDA receptor function, GABA neurotransmission, and buffering stress response. Both are depleted in mood instability subjects and compromised stress resilience but causality remains unelucidated in large prospective studies. Taken together, these nutrients provide a biochemical foundation for dietbased prevention and treatment in psychiatry. Figure 1 shows which nutrients have the best available evidence, and Table 3 presents their mechanisms and clinical effects.

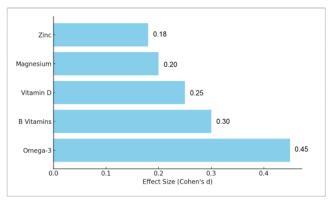


Figure 1: Key Nutrients and Their Effect on Mental Health Outcomes

Table 3. Principal Nutrients and Their Roles in Mental Health [20]

Nutrient	Mechanism	Mental Health Outcome	Food Sources
Omega-3 Fatty Acids	Anti-inflammatory, neuroprotective	Reduces depression, improves cognition	Fatty fish, flaxseed, walnuts
B Vitamins (B6, B12, Folate)	Cofactors in neurotransmitter synthesis and methylation	Supports mood, reduces depression	Leafy greens, poultry, legumes
Vitamin D	Neurotrophic regulation, HPA axis modulation	Reduces anxiety, enhances mood	Fatty fish, fortified dairy, sunlight
NMDA receptor Magnesium regulation, GABA modulation		Reduces stress, improves sleep	Nuts, seeds, whole grains
Zinc	Neurotransmission, anti-inflammatory	Supports mood, cognitive function	Meat, legumes, pumpkin seeds

***** Whole Food Patterns Supporting Brain Health

Along with specific nutrients, dietary patterns have synergistic effect on mental health. The Mediterranean diet, characterized by an abundance of fruits, vegetables, legumes, nuts, olive oil, and fish, is repeatedly associated with lower risk of depression and cognitive impairment, perhaps due to combined anti-inflammatory and antioxidant effects [21]. The DASH diet, developed originally for cardiovascular disease, is rich in micronutrients and polyphenols that are favorable for neurotransmitter function and reduce systemic inflammation. New evidence also implicates Asian diets, such as Japanese or Korean diets that are high in fish, seaweed, soy food, and fermented foods, to have a similar effect through gut microbiota modulation and omega-3 intake. In Africa, typical diets that are high in whole grains, legumes, and leafy greens have been linked with reduced depressive symptoms in sparse observational evidence but not in intervention evidence. Antiinflammatory diets with high intake of plant foods and omega-3-containing protein and low intake of refined sugar and saturated fats may have the potential to reduce stress-related disorders but are constrained by RCTs as well [22].

❖ Synergy between Nutrients and Food Patterns

Healthy diets are bound to gain through the synergistic action of a number of nutrients. Fish-derived omega-3 fatty acids, vegetable foods-derived antioxidants and polyphenols, and nuts and seeds offering magnesium reduce oxidative stress, enhance the production of neurotransmitters, and stabilize the HPA axis [23]. Human trials validate this synergistic hypothesis: adherence to Mediterranean and similar diets has been associated with reduced depressive symptoms, improved cognitive function, and reduced inflammatory biomarkers. However, most trials are short duration, conducted in Western populations, and have variable compliance assessment tools, which restricts their applicability. It is recommended that future trials test culturally adapted diets in non-Western populations and multi-nutrient intervention in well-characterized clinical samples. Figure 2 illustrates the relative efficacy of the leading dietary patterns, highlighting their potential to guide public health policy [24].

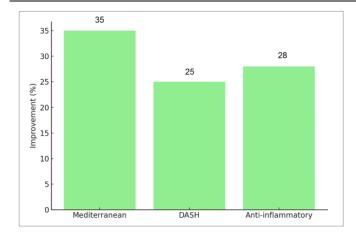


Figure 2: Dietary Patterns and Mental Health Benefits

Individual nutrients and diets exert robust impacts on mental health outcomes. Plausibility of mechanisms is established but the evidence is constrained by heterogeneous results in supplementation trials, short-term or cross-sectional study designs, and underrepresentation of non-Western diets. Longitudinal cohort studies, mechanistic RCTs of combined effects of nutrients, and culturally relevant diet interventions that reflect global food systems diversities are suggested for future investigations.

Clinical Evidence

* Randomized Controlled Trials in Mental Health

Clinical trials increasingly confirm dietary treatments as addons to mental health therapy. Randomized controlled trials (RCTs) demonstrate that adherence to nutrient-dense diets, particularly Mediterranean-style patterns, reduces depression and anxiety symptoms. As an example, the SMILES trial of enhanced depressive symptoms after a 12-week Mediterranean-style diet vs a social support control. Nutrientspecific treatments have also been explored. Omega-3 fatty acid, B vitamin, and magnesium supplementation has positive impacts on mood, cognition, and stress resistance. Yet trial outcomes are not necessarily uniform—dose variability, intervention duration, and participant starting nutrient level contribute. In children with ADHD, food elimination diets and omega-3 supplementation have yielded modest improvements in attention and behavior, illustrating the potential but also the limitations of diet adjuncts in neurodevelopmental disorders [25].

* Nutraceuticals and Mental Health

Nutraceuticals like vitamins, minerals, and polyphenols are increasingly being investigated for their psychotropic effects. Supplementation with vitamin D, folate, and omega-3 fatty acids has been shown to augment depressive symptoms in individuals with confirmed deficiencies. Polyphenols in the diet (blueberries, cocoa, green tea) have antioxidant and anti-inflammatory activities that have been shown to alleviate mood disturbances and cognitive impairment [26]. Despite encouraging results, most studies are small, short-term, and heterogeneous in population and intervention design.

Evidence for nutraceutical efficacy in pharmacoresistant patients is especially limited, though this remains a promising research direction.

* Role of Gut Microbiota and Probiotics

The gut-brain axis provides a mechanistic rationale for microbiota-based interventions. **RCTs** of supplementation have reductions in anxiety, depressive symptoms, and markers of stress, potentially through enhanced short-chain fatty acid production, immune modulation, and vagal signaling [27]. When supplemented with prebiotic fibers, probiotics may even improve mood, cognition, and sleep quality. Yet outcomes are mixed: strainspecific effects, dosing differences, and baseline differences in microbiota pre-existing reduce replicability. Furthermore, clinical trials have predominantly been conducted in Western or East Asian populations, with sparse evidence from the Middle East, Africa, or South Asia-highlighting a need for culturally relevant studies. Figure 3 illustrates how gut microbiota affect brain health, adding mechanistic pathways already delineated.

Table 4. Summary of Clinical Evidence on Dietary Interventions [28]

Intervention	Population	Study Design	Outcome	Mechanism
Mediterranean diet	Adults with depression	RCT	Reduced depressive symptoms	Anti- inflammatory, antioxidant
Omega-3 supplementation	Adults & children	RCT	Improved mood & attention; mixed effects in ADHD	Neurotransmitter support, anti- inflammatory
B vitamins & folate	Adults with depression	RCT	Reduced depressive symptoms; strongest in deficient individuals	Methylation, neurotransmitter synthesis
Probiotics (± prebiotics)	Adults with anxiety & depression	RCT	Reduced anxiety, improved mood and sleep (strain- dependent)	Gut microbiota modulation, SCFA production

Together, RCTs suggest that dietary treatment—ranging from whole diets to specific nutraceuticals and probiotics—can improve mood and cognitive outcomes. However, the evidence base is compromised by short follow-up, limited sample sizes, and variability of intervention protocols. Inconsistent findings, particularly in omega-3 and vitamin D supplementation trials, emphasize the need for better designs. Notably, the majority of research has been undertaken in Western contexts, thus creating significant gaps in culturally modified interventions within low- and middle-income countries. Long-term, multi-arm RCTs, tailored nutrition strategies, and regional dietary trials should be given high research priority in future clinical investigations to resolve efficacy and guide public health translation.

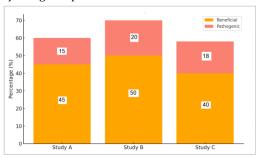


Figure 3: Gut-Brain Axis Modulation by Probiotics

Nutrition through the Life Course and Mental Health

❖ Maternal and Child Nutrition

Maternal diet plays a key part in fetal brain development and lifetime risk of psychiatric disorder. Chronic deficiencies in omega-3 fatty acids, iron, folate, and iodine are all linked with impaired neurodevelopment, cognitive impairment, and vulnerability to mood disorder in later life [29]. Breastfeeding delivers essential fatty acids, micronutrients, and bioactive compounds that enhance cognitive and emotional maturation in early infancy [30]. While these associations are confirmed through cohort studies and RCTs, some of these gaps remain. Trials are mostly based in high-income nations, while maternal undernutrition, anemia, and iodine deficiency in low- and middle-income nations continue to exist and remain underexplored on the aspect of children's mental health. Furthermore, the separation of nutrition from socioeconomic and environmental confounding variables continues to hamper causal inference. Table 5 summarizes those nutrients most relevant to maternal and early childhood mental health, and Figure 4 illustrates how nutritional interventions have stage-specific effects across the life course.

Table 5. Maternal and Early Childhood Nutrients with Implications for Mental Health [31]

Nutrient	Role in Neurodevelopment	Source	Evidence Level
Omega-3 fatty acids (DHA/EPA)	Synaptogenesis, neuronal membrane fluidity	Fatty fish, algae oil	High (RCTs & cohort studies)
Folate	DNA methylation, neurotransmitter synthesis	Leafy greens, fortified cereals	High
Iron	Myelination, cognitive development	Red meat, legumes	Moderate
Iodine	Thyroid hormone production	Iodized salt, dairy	Moderate
Vitamin D	Neurotrophic support	Sunlight, fortified foods	Moderate

Adolescent Dietary Patterns and Brain Development

Adolescence is a "window of opportunity" for brain development, emotional regulation, and emergence of psychiatric disorders. Diets high in sugar, ultra-processed foods, and saturated fats are associated with risk for depression, anxiety, and cognitive impairment. Conversely, adherence to Mediterranean or anti-inflammatory dietary styles is associated with higher executive function, memory, and stress resilience [32]. Although there are encouraging findings, most adolescent studies are cross-sectional, which causality. Additionally, excludes studies disproportionately concentrated in Western environments, despite the fact that most of the world-e.g., Africa and the Middle east—is nutritionally transitioning rapidly toward processed food. This underscores the need for region-specific adolescent trials of nutrition to evaluate cultural patterns of eating and their mental health repercussions.

Geriatric Nutrition and Dementia

In later life, nutrition is also an important factor in maintaining cognitive function and decreasing dementia and depression risk in late life. Proper intake of antioxidants, omega-3 fatty acids, vitamin B12, and polyphenols has been reduce oxidative shown stress. modulate neuroinflammation, and preserve neuronal function. The MIND diet, an amalgamation of Mediterranean and DASH diet principles, has been associated with more slows cognitive decline and Alzheimer's incidence reduction [33]. Yet, findings are not always consistent. Some RCTs show little or no supplementation effect (for example, omega-3 or antioxidant trials), possibly because intervention is offered too late after neuropathology is established. This highlights the importance of early-life and midlife intervention as preventive strategies. Table 6 lists key nutrients and food habits relevant to maintenance of mental health in older adults.

Table 6. Nutritional Strategies for Older Adults with Mental Health Consequences [34]

Nutrient / Pattern	Mechanism	Outcome Evidence	Sources
Omega-3 fatty acids	Anti-inflammatory, synaptic plasticity	Reduced cognitive decline (mixed RCT evidence)	Fatty fish, flaxseed
Antioxidants (Vitamins C & E)	Oxidative stress reduction	Improved memory & mood (mainly observational)	Fruits, vegetables, nuts
B12 & Folate	Homocysteine regulation	Lower dementia risk; supplementation trials mixed	Meat, leafy greens
Polyphenols	Neuroprotection, anti- inflammatory	Enhanced cognitive performance	Berries, cocoa, tea
MIND diet	Synergistic combination of above	Reduced Alzheimer's incidence	Whole foods, plant- based emphasis

A life-course approach recognizes that nutritional determinants affect mental health throughout all phases—prenatal development to older age. Even though there is strong biological plausibility, most of the evidence comes from observational or short-term studies with inconsistent supplementation effects. The inequalities are extreme between settings: LMICs have undernutrition during pregnancy and early childhood, adolescents everywhere exposed to risk through processed diets, and older individuals everywhere suffering from micronutrient deficiencies and agerelated malabsorption. Directions for future research must include longitudinal life-course cohorts, intergenerational research on maternal diet and child mental health, and culturally adapted interventions in older adults and adolescents from underrepresented regions.

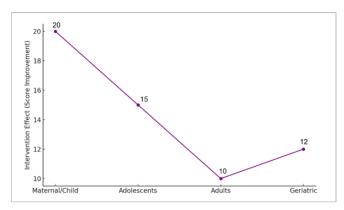


Figure 4: Nutrition across the Life Course and Mental Health Outcomes

Public Health and Policy Implications

Nutrition-Based Community-Level Mental Health Interventions

At the community level, nutrition interventions can provide scalable mental health gains through early and at-scale reduction of dietary risk factors. There is evidence that these interventions increasing access to healthy foods-e.g., school meal schemes, community gardens, and culturally specific nutrition education—can decrease risk of depression, anxiety, and behavioral disorders. For instance, school feeding programs in Sub-Saharan Africa have improved attention and classroom behavior, whereas European school fruit and vegetable scheme provision has been associated with better emotional well-being. Similarly, urban North American community garden initiatives not only add nutritional diversity but also increase social cohesion, an immune component against depression and stress [35]. However, achievement depends on contextualization. Poor contexts demand the solving of structural obstacles of food insecurity, affordability, and seasonality, while high-income countries demand reducing ultra-processed food consumption and sustaining behavior change as core challenges. This calls for the tailoring of community interventions to socio-economic environments.

Policy Approaches to Mainstreaming Diet within Mental Health Policy

Nutrition is still underrepresented in mental health policy, although more evidence is known about its potential to contribute to prevention and treatment. Policymakers can now explicitly include mental health outcomes in national dietary guidelines, moving the emphasis from sheer physical health to overall well-being. Fiscal measures such as subsidies to healthy foods and taxes to sugar-sweetened beverages have already shown to be effective—Mexico's sugar-sweetened beverage tax, for example, reduced the purchasing of soft drinks among low-income groups, subsequently reducing its attendant risks of obesity and mental health comorbidities.

Good policy implementation requires intersectoral coordination. Partnerships between schools, health systems, the food industry, and municipalities need to be implemented in order to ensure equitable and sustainable interventions. Latin America's "conditional cash transfer" programs with nutrition education are an example of how social policy can be employed to enable dietary improvement with resulting mental health benefits [36]. Table 7 summarizes potential policy strategies, population targets, and desired outcomes, together with mechanisms of action.

Table 7. Policy Strategies for Nutrition-Based Mental Health Promotion [37]

Policy Approach Target Population		Mechanism	Expected Outcome	
School meal programs	Children & adolescents	Provision of nutrient- rich meals	Improved cognitive performance, reduced behavioral problems	
Subsidized healthy foods	Low-income communities	Lower cost barriers	Increased nutrient intake, reduced depression/anxiety risk	
Public awareness campaigns	General population	Nutrition education and behavior change	Healthier dietary patterns, enhanced resilience	
Fiscal measures (taxes/subsidies)	National populations	Incentivize healthy food consumption	Long-term reduction in diet-related mental health burden	
Community gardening & local initiatives	Local populations	Access to fresh foods, social cohesion	Better diet quality, reduced stress and	

Implications for Health Systems

Integrated treatment and prevention may be accomplished by integrating nutrition into mental health care tracks. Preventive treatment may be provided at an early stage by screening eating habits during psychiatric assessment and initiating nutrition counseling in primary care. Pilot programs in Europe have shown that dietitian intervention coupled with psychiatric intervention improves treatment adherence and reduces depressive symptoms. Digital health technologies hold an unrealized promise: mobile applications and telehealth software can provide scalable nutrition treatment, track compliance, and transmit personalized feedback, particularly in disadvantaged populations. Yet challenges also remain, including training healthcare professionals in nutritional psychiatry, making healthy food affordably accessible, and developing viable business models for software interventions.

In summary, prioritizing nutrition as a public mental health issue requires collective effort at policy, community, and health systems levels. While interventions such as school feeding and fiscal policies hold promise, it is subject to cultural adaptation, economic feasibility, and systematic assessment of mental health impact—not just dietary change.

Challenges and Future Research

❖ Need for Longitudinal, Large-Scale Studies

Despite increasing evidence of the relationship between nutrition and mental health, a majority of studies are small, short-term, or cross-sectional, thus precluding causal inference. Large population-based longitudinal cohorts are needed to illuminate how dietary patterns and nutrient intake affect the development, course, and severity of mental disorders throughout the lifespan. Continuous dietary intake measurement, mental health screening, and biomarker evaluation would allow identification of critical windows of vulnerability—i.e., early childhood, adolescence, and older age—and temporal evaluation of nutrient-mental health associations [38].

Translational Barriers to Bridging Evidence to Practice

A number of barriers exist to translating nutrition science to real-world mental health practice. First, variability in study design, dietary assessment, and outcome measures compromises comparability and generalizability. First, interpersonal variation in genetics, microbiota composition, and

https://doi.org/10.63954/trsy2e55

lifestyle complicates the provision of recommendations to all. Second, the health system limitations—most critically within low- and middle-income countries—tie in the inclusion of dietary guidance into routine psychiatric practice. These are surmountable by having standardized research techniques, educating clinicians in nutritional psychiatry, and culturally and economically suitable public health interventions [39].

Potential of Personalized Nutrition for Mental Health

Personalized nutrition—dietary interventions tailored to genetic, metabolic, and microbiome data—is a promising avenue for optimizing mental health outcomes. For instance, individualized guidance on omega-3 fatty acids, B vitamins, or probiotics may be more effective if taken into consideration with one's biological and lifestyle variables. Precision-concept preventive and therapeutic strategies for psychiatric conditions may be created in the future by integrating multiomics data, digital health resources, and machine learning [40].

Future Directions

The progress in the area will be through collaborative, multidisciplinary studies that combine nutrition science, psychiatry, epidemiology, and public health policy. Some of the highest priorities are:

- 1. Longitudinal life-course studies to determine critical windows of nutritional influence on mental health.
- 2. Randomized multi-arm trials that couple nutrient supplementation with dietary pattern interventions.
- 3. Culturally adapted interventions for previously understudied populations, with consideration of regional eating habits and food system constraints.
- Convergence of digital and precision nutrition approaches to enhance adherence, tracking, and personalized guidance.
- Policy-informative research to evaluate costeffectiveness and scalability of population-level nutritional interventions for mental health.

Resolution of ethical, accessibility, and equity challenges will be essential to ensure that evidence-based nutrition strategies for mental health benefit different groups and are sustainable in the long term.

Conclusion

Cumulating evidence illuminates a robust, multifactorial relationship between nutrition and mental health. A variety of key nutrients, eating habits, and biological mechanisms all play a role in affecting mood regulation, cognitive processing, and stress resilience. Observational studies and clinical trials both indicate that interventions such as Mediterranean-style diets, omega-3 supplementation, and probiotics can favorably affect mental health across the life course—from maternal and early childhood nutrition to adolescent development and healthy aging. Incorporating nutrition into public health

policy and community-based interventions presents an scalable model for the prevention and management of mental disorders. However, there are still major challenges such as heterogeneity in study design, paucity of longitudinal evidence, and hurdles to research practice translation. A combined strategy with tailored nutrition, population-level interventions, and supportive policies can maximize mental health benefits, reduce the burden of psychiatric disorders, and advance public health goals. Future plans should comprise robust, culturally appropriate research and implementation strategies that maximize gains to be fair and long-lasting worldwide.

Conflict of Interest: NIL

Funding Sources: NIL

References

- [1] F. Ahmed, M.T. Arshad, S. Maqsood, A. Ikram & K.T. Gnedeka, Gut-Brain Axis in Obesity: How Dietary Patterns Influence Psychological Well-Being and Metabolic Health? Food Science & Nutrition. 13(7); (2025) e70689.
- [2] S. Mörkl, J. Wagner-Skacel, T. Lahousen, S. Lackner, S.J. Holasek, S.A. Bengesser, A. Painold, A.K. Holl & E. Reininghaus, The role of nutrition and the gut-brain axis in psychiatry: a review of the literature, Neuropsychobiology. 79(1); (2020) 80-8.
- [3] A. Sălcudean, D.M. Cîmpian, R.A. Popovici, N. Forna, D.M. Corodan-Comiati, A.B. Sasu, M.M. Cozma, C.R. Bodo, E.C. Enache, M. Păcurar & R.E. Crăciun, Dietary Habits and Their Influence on the Microbiome and Mental Health in Adolescents, Nutrients. 17(9); (2025) 1496.
- [4] M. Fahad & B. Bukhari, the gut-brain axis: exploring the relationship between microbiota and mental health, American International Journal of Biology and Life Sciences. 6(1); (2024) 1-8.
- [5] M. Merino del Portillo, V.J. Clemente-Suarez, P. Ruisoto, M. Jimenez, D.J. Ramos-Campo, A.I. Beltran-Velasco, I. Martínez-Guardado, A. Rubio-Zarapuz, E. Navarro-Jimenez & J.F. Tornero-Aguilera, Nutritional modulation of the gut-brain axis: A comprehensive review of dietary interventions in depression and anxiety management, Metabolites. 14(10); (2024) 549.
- [6] R. Zhang, M. Zhang & P. Wang, The intricate interplay between dietary habits and cognitive function: insights from the gut-brain axis, Frontiers in Nutrition. 12; (2025) 1539355.
- [7] C.S. Oriach, R.C. Robertson, C. Stanton, J.F. Cryan & T.G. Dinan, Food for thought: The role of nutrition in the microbiota-gut-brain axis, Clinical Nutrition Experimental. 6; (2016) 25-38.
- [8] J. Appleton, The gut-brain axis: influence of microbiota on mood and mental health, Integrative Medicine: A Clinician's Journal. 17(4); (2018) 28.
- [9] V.O. Kyei-Baffour, A.K. Vijaya, A. Burokas & E.B. Daliri, Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health, Critical Reviews in Food Science and Nutrition. (2025) 1-20.
- [10] A. Verma, S.S. Inslicht & A. Bhargava, Gut-brain axis: Role of microbiome, metabolomics, hormones, and stress in mental health disorders, Cells. 13(17); (2024) 1436.
- [11] R. Wadhwa, R. Gupta & P.K. Maurya, Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder, Current Pharmaceutical Design. 24(40); (2018) 4711-25.
- [12] Z. Ansari, S. Pawar & R. Seetharaman, Neuroinflammation and oxidative stress in schizophrenia: are these opportunities for repurposing? Postgraduate Medicine. 134(2); (2022) 187-99.

- [13] K. Hyland, Inherited disorders affecting dopamine and serotonin: critical neurotransmitters derived from aromatic amino acids, The Journal of Nutrition. 137(6); (2007) 1568S-72S.
- [14] R.C. Cîmpeanu, M.V. Boldeanu, R.V. Ahriţculesei, A.E. Ciobanu, A.M. Cristescu, D. Forţofoiu, I. Siloşi, D.N. Pirici, S.M. Cazacu, L. Boldeanu & C.C. Vere, Correlation between neurotransmitters (Dopamine, Epinephrine, Norepinephrine, Serotonin), prognostic nutritional index, Glasgow prognostic score, systemic inflammatory response markers, and TNM staging in a cohort of colorectal neuroendocrine tumor patients, International Journal of Molecular Sciences. 25(13); (2024) 6977.
- [15] K. Dedovic, A. Duchesne, J. Andrews, V. Engert & J.C. Pruessner, The brain and the stress axis: the neural correlates of cortisol regulation in response to stress, Neuroimage. 47(3); (2009) 864-71.
- [16] J.P. Herman, J.M. McKlveen, S. Ghosal, B. Kopp, A. Wulsin, R. Makinson, J. Scheimann & B. Myers, Regulation of the hypothalamic-pituitary-adrenocortical stress response, Comprehensive Physiology. 6(2); (2016) 603-21.
- [17] D.R. Simkin & L.E. Arnold, The roles of inflammation, oxidative stress and the gut-brain axis in treatment refractory depression in youth: complementary and integrative medicine interventions, OBM Integrative and Complementary Medicine. 5(4); (2020) 1-25.
- [18] R.J. Wurtman & J.J. Wurtman, Nutrients, neurotransmitter synthesis, and the control of food intake, Psychiatric Annals. 13(11); (1983) 854-7.
- [19] S. Cornish & L. Mehl-Madrona, The role of vitamins and minerals in psychiatry, Integrative Medicine Insights. 3; (2008) 117863370800300003.
- [20] M. Muscaritoli, The impact of nutrients on mental health and well-being: insights from the literature, Frontiers in Nutrition. 8; (2021) 656290.
- [21] B. Kobsar, A systems approach to brain degeneration part 2 macronutrients, whole foods, micronutrients, medicinal plants, nutraceuticals and gut health, Nutritional Perspectives: Journal of the Council on Nutrition. 42(4); (2019).
- [22] J.A. Seabrook, A. Avan, C. O'Connor, H. Prapavessis, L. Nagamatsu, J. Twynstra, S. Stranges, A. MacDougall & V. Hachinski, Dietary patterns and brain health in middle-aged and older adults: a narrative review, Nutrients. 17(9); (2025) 1436.
- [23] K.P. Sivakumar, S. SriAmirthavarshini, A. Vijayakumar, A. Kalaiselvan & T. Balaji, Exploring the relationship between dietary patterns and mental health, Journal of Scientific Research and Reports. 30(12); (2024) 455-62.
- [24] D.R. Jacobs Jr. & L.M. Steffen, Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy, The American Journal of Clinical Nutrition. 78(3); (2003) 508S-13S.
- [25] B.D. Stein, L.H. Jaycox, S.H. Kataoka, M. Wong, W. Tu, M.N. Elliott, A. Fink & A. Freedman, A mental health intervention for schoolchildren exposed to violence: a randomized controlled trial, JAMA. 290(5); (2003) 603-11.
- [26] M. Chiappedi, S. de Vincenzi & M. Bejor, Nutraceuticals in psychiatric practice, Recent Patents on CNS Drug Discovery. 7(2); (2012) 163-72.
- [27] E. Sherwin, T.G. Dinan & J.F. Cryan, Recent developments in understanding the role of the gut microbiota in brain health and disease, Annals of the New York Academy of Sciences. 1420(1); (2018) 5-25.
- [28] P. Mirmiran, Z. Bahadoran & Z. Gaeini, Common limitations and challenges of dietary clinical trials for translation into clinical practices, International Journal of Endocrinology and Metabolism. 19(3); (2021) e108170.
- [29] A. O'Neil, F. Jacka & M. Berk, The role of nutrition in mental and brain health across the life course, Psychiatric Annals. 52(2); (2022) 47-8.

- [30] S. Puri, M. Shaheen & B. Grover, Nutrition and cognitive health: a life course approach, Frontiers in Public Health. 11; (2023) 1023907.
- [31] R.A. Bekdash, Early life nutrition and mental health: the role of DNA methylation, Nutrients. 13(9); (2021) 3111.
- [32] Y. Mou, E. Blok, M. Barroso, P.W. Jansen, T. White & T. Voortman, Dietary patterns, brain morphology and cognitive performance in children: results from a prospective population-based study, European Journal of Epidemiology. 38(6); (2023) 669-87.
- [33] P. Soysal, O. Dokuzlar, N. Erken, F.S. Günay & A.T. Isik, The relationship between dementia subtypes and nutritional parameters in older adults, Journal of the American Medical Directors Association. 21(10); (2020) 1430-5.
- [34] M.D. Carcelén-Fraile, N.D. Déniz-Ramírez, J. Sabina-Campos, A. Aibar-Almazán, Y. Rivas-Campo, A.M. González-Martín, Y. Castellote-Caballero & Y. Martín, Exercise and nutrition in the mental health of the older adult population: a randomized controlled clinical trial, Nutrients. 16(11); (2024) 1741.
- [35] J. Ntambara & M. Chu, The risk to child nutrition during and after COVID-19 pandemic: what to expect and how to respond, Public Health Nutrition. 24(11); (2021) 3530-6.
- [36] J.M. Hunger, J.P. Smith & A.J. Tomiyama, An evidence-based rationale for adopting weight-inclusive health policy, Social Issues and Policy Review. 14(1); (2020) 73-107.
- [37] J. Campion, A. Javed, C. Lund, N. Sartorius, S. Saxena, M. Marmot, J. Allan & P. Udomratn, Public mental health: required actions to address implementation failure in the context of COVID-19, The Lancet Psychiatry. 9(2); (2022) 169-82.
- [38] J.P. Chang & K.P. Su, Nutrition and immunology in mental health: precision medicine and integrative approaches to address unmet clinical needs in psychiatric treatments, Brain, Behavior, and Immunity. 85; (2020) 1-3.
- [39] V.J. Clemente-Suárez, H.C. Peris-Ramos, L. Redondo-Flórez, A.I. Beltrán-Velasco, A. Martín-Rodríguez, S. David-Fernandez, R. Yáñez-Sepúlveda & J.F. Tornero-Aguilera, Personalizing nutrition strategies: bridging research and public health, Journal of Personalized Medicine. 14(3); (2024) 305.
- [40] M.L. Norris, Exploring biologically oriented precision mental health initiatives for the care of patients with eating disorders: a narrative review, European Eating Disorders Review. 32(6); (2024) 1117-37.

Declarations:

Authors' Contribution:

- All Authors contributed equally in conceptualizing, research, data collection and compilation of the manuscript
- The authors agree to take responsibility for every facet of the work, making sure that any concerns about its integrity or veracity are thoroughly examined and addressed

Correspondence:

Salwa AL Majali

salwa.almajali@aau.ac.ae