

Wah Academia Journal of Health and Nutrition

Journal of Health and Nutrition

Homepage: https://wajhn.com/index.php/journal

Original Article

Personalized Nutrition in the Genomics and Digital Age: Current Issues, Future Directions, and Evidence

Abdol Ghaffar Ebadi^{a*} and Zeliha Selamoglu^{b1-2}

- ^a Department of Agriculture, Jo.C., Islamic Azad University, Jouybar Iran
- ^{b1}Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University, Nigde Turkey
- ^{b2}Khoja Akhmet Yassawi International Kazakh-Turkish University, Faculty of Sciences, Department of Biology, Turkestan Kazakhstan

Article Information

Received 17 February

Accepted 9 March 2025

Available online 31 March 2025

Keywords: personalized nutrition, nutrigenomics, digital health, precision medicine, chronic disease, diet therapy

Abstract

Personalized nutrition represents a paradigm shift from standard one-size-fits-all dietetic advice to individually tailored intervention based on an individual's genetic profile, metabolic health, lifestyle, and environment. Advances in nutrigenomics and metabolomics have highlighted the role of genetic difference and molecular mechanisms in nutrient metabolism, food response, and disease risk for chronic conditions such as obesity, diabetes, and cardiovascular disease. At the same time, digital health technologies like mobile health applications, wearables, artificial intelligence–driven analytics, and continuous glucose monitoring are enabling real-time data capture and individualized feedback, thereby maximizing compliance and clinical impact of nutrition interventions. This review synthesizes evidence for the convergence of genomics and digital health into personalized nutrition, critically evaluating their common potential for better disease prevention and management. Emerging evidence shows that they can optimize dietary impacts, promote metabolic well-being, and facilitate precision-based preventive therapy but remain problems with respect to interpreting data, validating biomarkers, ethical considerations, access, and cost-effectiveness. By taking into account the current breakthroughs, challenges, and opportunities, this paper advocates for inter-disciplinary action among geneticists, clinicians, nutritionists, and digital health experts, and robust policy regulation to offer secure and equitable embracing of precision nutrition strategies. Future research involves further refining big data integration, optimizing predictive modeling, and translating results to scalable interventions that can be applied in both clinical and public health contexts around the globe, setting personalized nutrition as the basis for next-generation healthcare.

Introduction

ver the last few decades, diet advice has most frequently been set as population-level guidelines to enhance health and prevent disease in general. While such approaches have undoubtedly benefited public health, growing evidence suggests that "one-size-fits-all" dietary advice overlooks individual variability in nutrient metabolism, genetic predisposition, and lifestyle [1]. For instance, individuals with the same diet can have extremely varied consequences for weight, blood glucose, or lipid profiles, indicating the limitation of one-size-fits-all advice. This has fueled the growth of personalized nutrition, a paradigm shift that emphasizes individualizing dietary guidance based on biological and behavioral characteristics [2]. Centering all this is the field of genomics and nutrigenomics, which investigates how genetic variation affects response to diet and risk of dietrelated disease. Genetic variation in genes that encode for lipid metabolism, glucose metabolism, or inflammatory response can profoundly influence how individuals respond to nutrients. As an example, APOE gene variants are associated with variation in lipid metabolism that influences cardiovascular disease risk and response to consumption of

dietary fat [3]. As metabolomics and proteomics offer new and dynamic views of biological processes to enable biomarkers of dietary response to be predicted better than conventional measurements, so these technologies bring the molecular foundation for precision nutrition interventions [4].

Concurrent with these advances at the molecular level, increased investment in digital health technologies has also transformed the ability to measure, analyze, and apply personalized nutrition into regular practice [5]. Wearable monitors, smartphone health apps, and continuous glucose monitoring all deliver instantaneous physiological response to food intake. Leveraging artificial intelligence and machine learning software, these technologies allow for personalized response, adaptive meal planning, and scalable treatment. Digital health thus bridges the gap between laboratory-based research and effective clinical or daily living use, making precision nutrition a practical possibility [6].

The interplay between genomics and digital health has significant impacts on the prevention and management of chronic diseases. Obesity, type 2 diabetes, and cardiovascular

https://doi.org/10.63954/sns00e14

disease, which are respectively still the predominant global health burdens, are influenced by complex interactions between an individual's genetic predisposition, diet, and environment. Personalized nutrition has the potential to reduce the occurrence of disease and improve clinical outcomes by rendering dietary interventions sensitive to an individual's own risk profile. Moreover, these approaches can enhance patient compliance, as personalized feedback and web-based participation engender greater motivation and accountability [7].

Promising as it is, the discipline is not free of several challenges. Ethical concerns regarding genetic testing, privacy of data, and disparities in access to electronic health tools bring with them issues regarding fairness and equity of implementation. Additionally, translating genomics and metabolomics discovery to effective clinical guidelines requires further validation and standardization [8]. Costeffectiveness remains a main limitation, particularly in resource-limited settings, where population-level interventions remain the mainstay of public health intervention. Closure of these gaps will be essential to ensure responsible and sustainable integration of personalized nutrition into healthcare systems. Ultimately, personalized nutrition is a paradigm shift with potential to revolutionize eating practice and public health policy. By combining the molecular insights of genomics and metabolomics with the real-time data platform of digital health, it is now possible to surpass non-specific advice to evidence-based, individualized dietary interventions [9-10]. This review aims to conduct an extensive assessment of the evidence, address the potential and limitations of converging genomics and digital health to personalized nutrition, and set future directions to make this strategy a pillar of next-generation medicine.

The Science of Personalized Nutrition

Parallel to nutrigenomics and nutrigenetics in the center of personalized nutrition is the science examining how nutritional differences affect gene expression and how dietary factors affect genes, respectively. Single nucleotide polymorphisms (SNPs) are some of the most-studied genetic differences and are commonly employed as predictors of human response to dietary components [11]. For example, MTHFR gene polymorphisms affect folate metabolism and homocysteine levels and adjust cardiovascular risk and nutritional needs for folate. Similarly, APOE gene SNPs are associated with lipid metabolism and differential response to dietary fat intake in such a way that some subgroups may reap maximum benefit from individualized reduction of fat consumption. These findings stress the need to enhance nutritional counseling based on genetic variability rather than on universally applicable recommendations [12]. Figure 1 illustrates the great influence of different SNP variants on nutrient metabolism and biomarker findings, in support of the necessity for individualized dietary recommendation.

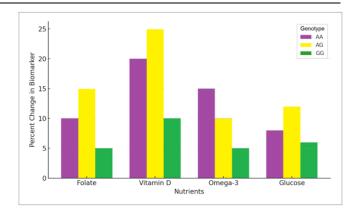


Figure 1: Impact of Genomic Variants on Nutrient Response

Beyond genomics, the gut microbiome has emerged as a critical factor in tailoring dietary response. With their trillions of microbes, the microbiome regulates nutrient acquisition, metabolic activity, and even host immunity. Studies have demonstrated that the composition and diversity of the gut microbiota can predict glycemic responses to identical meals, and this demonstrates the limitation of one-size-fits-all nutritional advice. As an example, individuals with higher Prevotella richness perform better on high-fiber diets individuals higher compared to with Bacteroides predominance. This dynamic interplay between diet and microbiota suggests that microbiome-guided nutrition interventions hold promise in precision medicine [13].

The integration of nutrigenomic information and microbiome data provides an enhanced platform for diet personalization. While SNP testing identifies genetic predispositions fixed over a lifetime, microbiome profiling identifies the adaptive and environment-dependent component of response to diet. When combined, these tools can predict individual responses more precisely, from weight management to chronic disease risk reduction. But transforming these complex data into effective clinical tools requires a standard process of trials, robust predictive models, and clear guidelines to practitioners. In an effort to envision the interaction of these variables, Table 1 provides an overview of some selected SNPs and microbiome parameters that are recognized to influence dietary responses and disease risk. The table thus demonstrates the merit of considering fixed genetic determinants together with variable microbial communities when developing personalized plans of nutrition. The integration of these data is capable of driving individualized dietary advice toward an evidence-based clinical practice [14].

Table 1. Genetic and microbiome contributors to personalized nutrition response

Factor Type	Example Marker/Characteristic	Nutritional Relevance	Clinical Implication
Genetic SNP	MTHFR C677T variant	Alters folate metabolism, ↑ homocysteine	Higher folate intake reduces CVD risk
Genetic SNP	APOE 84 allele	Influences lipid metabolism	Lower saturated fat intake improves lipid profile
Genetic SNP	TCF7L2 polymorphism	Affects insulin secretion	Tailored carbohydrate restriction beneficial in T2D
Microbiome	↑ Prevotella abundance	Enhanced fiber fermentation	High-fiber diet improves glycemic control
Microbiome	† Bacteroides dominance	Protein/lipid fermentation preference	Protein-rich diets better tolerated
Microbiome	Reduced microbial diversity	Impaired nutrient metabolism	Probiotic/prebiotic interventions recommended

Digital Health Technologies for Personalized Nutrition

The integration of artificial intelligence (AI) and machine learning (ML) with nutrition science has enabled new prospects for predictive dietary planning and precision health care. By analyzing enormous datasets like genomic profiles, microbiome composition, habits, and medical markers, AI is able to design very precise dietary advice that optimizes the intake of nutrients and defense against diseases. As opposed to traditional models, machine learning algorithms are able to optimize predictions in an iterative process as more information are collected, enabling adaptive intervention according to changing physiological and behavioral patterns [15].

Wearable devices and mobile health apps are also central to the future of personalized nutrition. These products, such as smartwatches, continuous glucose monitoring (CGM), and exercise trackers, provide real-time feedback about metabolic reactions, exercise, and food intake. For instance, CGM allows for the measurement of postprandial glucose fluctuation, offering proof of how different foods differently impact glycemic management in a person. Mobile apps, usually in combination with cloud-based systems, track food consumption as well as nutritional status but also have Albased recommendations to support improved compliance with dietary regimens [16].

Tele-nutrition and distant care platforms have also extended the scope of personalized nutrition services. With video consultations, online monitoring, and cloud-based health records, clinicians and nutritionists are able to offer continuous extension of care beyond the usual visit to the clinic. This is particularly important in chronic disease management such as obesity, type 2 diabetes, and cardiovascular disease, where lifelong engagement and behavior modification are necessary [17]. Remote care models also overcome geographical and socio-economic boundaries, making personalized nutrition more convenient healthcare delivery. In conclusion of digital health technologies in precision nutrition innovations, Table 2 lists key tools, their application, and clinical uses. This conclusion describes the role of technology-driven innovations in the real-time, personalized, and scalable implementation of dietary interventions.

Table 2. Digital health technologies in personalized nutrition

Technology	Example Tools/Methods	Application in Nutrition	Clinical Implications
Artificial Intelligence & Machine Learning	Predictive algorithms, big data modeling	Personalized diet design, predictive risk analysis	Dynamic, adaptive interventions based on evolving data
Wearables & Continuous Monitoring	Smartwatches, fitness trackers, CGM	Tracking activity, glucose, heart rate	Real-time feedback for glycemic control, weight management
Mobile Applications	Food tracking apps, AI diet coaches	Nutrient monitoring, behavioral support	Improved adherence to dietary recommendations
Tele-nutrition & Remote Care	Video consultations, digital health records	Virtual dietary counseling	Greater accessibility, continuity of care, reduced disparities

Clinical Evidence and Applications

Translation of personal nutrition from theory to practice has picked up speed in recent years, with increasing evidence for its contribution to the prevention and control of chronic diseases. In contrast to typical dietary advice, which applies widespread recommendations to groups, personal diets take into consideration genetic, metabolic, and behavioral variation that has a strong impact on health outcomes. Clinical trials have progressively demonstrated that treatments based on the patient's genomic profile, gut microbiota, or metabolic markers have yielded better results than traditional generic dietary advice [18].

Personalized nutrition has also been shown to hold promise in obesity by identifying genetic variants associated with appetite control, fat metabolism, and burning energy. Trials have demonstrated individuals consuming diet plans designed according to their single nucleotide polymorphisms (SNPs) or microbiome profiles weigh more and maintain better adherence compared to standard calorie-restricted diets. This phenomenon is particularly relevant given the pandemic of obesity globally and the need for weight management treatments which consider inter-individual heterogeneity [19]. As suggested by Figure 2, the patients who were under personalized diet regimes had the greatest change in metabolic and cardiovascular markers compared to the patients on regular diets.

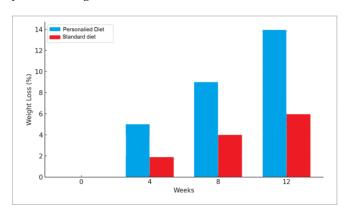


Figure 2: Effectiveness of Personalized Diets in Chronic Disease Management

Type 2 diabetes has also been a key area for the application of precision nutrition. Continuous glucose monitoring (CGM) studies have reported very variable glycemic responses to identical foods, supporting the ineffectiveness of one-size-fits-all dietary counseling on glycemia. Precision diet trials that customize meal composition to minimize postprandial glucose excursions have also had benefits for lowering glycemic variability, enhancing insulin sensitivity, and preserving long-term metabolic health, constituting a clinically effective intervention for diabetes treatment [20].

In cardiovascular disease (CVD), metabolomic and nutrigenomic approaches have successfully clarified dietary patterns lowering risk by influencing lipid metabolism and inflammatory mechanisms. For example, gene-diet interaction research has clarified that carriers of certain APOE variants exhibit varied outcomes following dietary fat consumption,

dictating lipid profiles and cardiovascular risk. Individualized dietary interventions consequently hold promise for enhancing risk stratification and treatment schemes in CVD prevention and management [21-23]. Table 3 summarizes evidence from a variety of clinical trials in obesity, diabetes, and cardiovascular disease, highlighting the clinical potential of personalized nutrition. These findings not only underscore the therapeutic potential of precision diets, but also the imperative to integrate genetic, metabolic, and digital health data into everyday clinical practice

Table 3. Clinical evidence from personalized nutrition trials in chronic diseases

Disease Area	Key Approach	Example Trial/Study Finding	Clinical Implications
Obesity	SNP-based diet tailoring; microbiome- guided diets	Greater weight loss and adherence compared to standard diets	Improves weight management through individualized strategies
Type 2 Diabetes	CGM-based personalized meal planning	Reduced glycemic variability and improved insulin sensitivity	Enhances precision in glucose control
Cardiovascular Disease	Gene-diet interaction studies (e.g., APOE variants and fat intake)	Differential lipid responses based on genotype	Enables targeted dietary interventions for CVD prevention
Multi-disease Prevention	Combined nutrigenomic and metabolomic profiling	Improved metabolic outcomes with precision diets	Potential for integrated chronic disease prevention models

Barriers and Challenges

Despite its growing promise, several obstacles to adoption of personalized nutrition at the population health and clinical levels have been recognized. One of the major challenges concerns ethics and privacy. Personalized nutrition involves genetic, metabolic, and lifestyle data that is sensitive in character and therefore must be collected, stored, and analyzed. Any abuse of this kind of information, including genetic discrimination and confidentiality breaches, is highly objectionable on ethical grounds. Establishing secure systems for data stewardship, informed consent, and patient self-determination continues to be a highest priority.

Accessibility and socioeconomic disparities are a critical challenge. The majority of precision nutrition interventions require advanced genomic testing, metabolomic profiling, or electronic monitoring devices such as continuous glucose monitors and wearables. Despite these devices being effective, they are expensive and found mostly in developed economies. Therefore, populations disproportionately at risk for dietrelated chronic diseases, such as the vulnerable, may indirectly not benefit from advancements in personalized nutrition, exacerbating already existing health disparities. Correcting affordability and equalizing access are therefore key to penetrating into actual-world impact from research.

Finally, the science is hampered by scientific and clinical restraints regarding the complexity of the human genome and nutrition. Although single nucleotide polymorphisms (SNPs), microbiome profiles, and metabolic biomarkers are informative, there is still limited information on how genes, diet, and the environment interplay. Existing evidence is piecemeal, and predictive models might be non-generalizable to populations with heterogeneous ethnic, genetic, and

cultural diversity. Further, marrying such heterogeneous data to actionable, evidence-based dietary advice is a formidable challenge for clinicians and policymakers. Table 4 summarizes in a systematic way these hurdles, and considers their implications for clinical practice and policy development. Identification of, and response to, these challenges are paramount to ensure personalized nutrition continues to evolve as a safe, equitable, and science-based approach to healthcare [24-28].

Table 4. Barriers and challenges in implementing personalized nutrition

Challenge	Description	Implications
Ethical and Privacy Concerns	Sensitive genomic and lifestyle data vulnerable to misuse	Need for strict data governance and informed consent frameworks
Accessibility & Socioeconomic Gaps	High costs of genomic testing and digital monitoring devices	Risk of widening health disparities in low-resource settings
Scientific Limitations	Incomplete knowledge of gene-diet-environment interactions	Reduced accuracy and generalizability of precision diet recommendations
Clinical Translation	Complexity of integrating multi-omics data into practice	Difficulty in scaling interventions for broad clinical use

Future Directions

The future of personalized nutrition is capitalizing on the integration of large data and predictive modeling to produce highly personalized diet recommendations. The advances in artificial intelligence, machine learning, and multi-omics analytics make it possible to integrate large sets of data from genomics, metabolomics, microbiome typing, and lifestyle tracking in real time. Through the adoption of these technologies, researchers and clinicians can better predict the reaction of an individual to diet-based treatments, optimize nutrient intake for optimum performance, and prevent the development of illnesses. Furthermore, the integration of digital health technologies such as wearable sensors and telenutrition platforms can facilitate greater compliance, create real-time feedback, and revise precision nutrition protocols through continuous iteration.

Nutrigenomics is a strong area in preventive health, such as tailoring the diet to resist genetic risk of obesity, diabetes, cardiovascular disease, and other diet-linked diseases. Besides the personal application, evidence-based tailored nutrition has implications for policy development and global health programs that are capable of influencing resource allocation, public health recommendations, and food guidelines at a population level. By overcoming ethical, accessibility, and scientific barriers, personalized nutrition can transition from research-based breakthroughs to practical, inclusive solutions for global health enhancement [29].

Conclusion

In summary, personalized nutrition is a novel strategy which combines genomics, metabolomics, microbiome science, and digital health technologies to individualize diet advice. Current evidence indicates its ability to promote metabolic well-being, prevent chronic diseases, and enhance compliance by providing individualized interventions and instant feedback. The implications for research are profound,

requiring large-scale, multi-omics studies and high-powered clinical trials to establish efficacy. For clinical practice, personalized nutrition holds the key to moving beyond the one-size-fits-all guidance of conventional dietary advice, enabling precision interventions that account for genetic, metabolic, and lifestyle variation. A public health perspective of combining personalized strategies with policy and population-level interventions can enable equitable access to nutrition solutions, eliminate disparities in health, and eventually improve global health outcomes.

References

- [1] J.B. Moore, From personalised nutrition to precision medicine: the rise of consumer genomics and digital health, Proceedings of the Nutrition Society. 79;(2020) 300-10.
- [2] M. Verma, R. Hontecillas, N. Tubau-Juni, V. Abedi & J. Bassaganya-Riera, Challenges in personalized nutrition and health, Frontiers in Nutrition. 5;(2018) 117.
- [3] R. San-Cristobal, F.I. Milagro & J.A. Martínez, Future challenges and present ethical considerations in the use of personalized nutrition based on genetic advice, Journal of the Academy of Nutrition and Dietetics. 113;(2013) 1447-54.
- [4] E. Maeckelberghe, K. Zdunek, S. Marceglia, B. Farsides & M. Rigby, The ethical challenges of personalized digital health, Frontiers in Medicine. 10;(2023) 1123863.
- [5] M. Subramanian, A. Wojtusciszyn, L. Favre, S. Boughorbel, J. Shan, K.B. Letaief, N. Pitteloud & L. Chouchane, Precision medicine in the era of artificial intelligence: implications in chronic disease management, Journal of Translational Medicine. 18;(2020) 472.
- [6] E.M. Aidoo, Advancing precision medicine and health education for chronic disease prevention in vulnerable maternal and child populations, World Journal of Advanced Research and Reviews. 25;(2025) 2355-76.
- [7] F. Fischer, The Interplay of Nutrition, Genetics, and Lifestyle in the Prevention and Management of Chronic Diseases: Insights from Modern Research, Public Health Spectrum. 1;(2024) 1.
- [8] D. Laddu & M. Hauser, Addressing the nutritional phenotype through personalized nutrition for chronic disease prevention and management, Progress in Cardiovascular Diseases. 62;(2019) 9-14.
- [9] S. Singar, R. Nagpal, B.H. Arjmandi & N.S. Akhavan, Personalized nutrition: tailoring dietary recommendations through genetic insights, Nutrients. 16;(2024) 2673.
- [10] S.M. Hosseiniara & S.S. Hosseini Zijoud, Nutrigenomics: A promising frontier in chronic disease prevention, Journal of Preventive and Complementary Medicine. 3;(2024) 195-200.
- [11] V.A. Mullins, W. Bresette, L. Johnstone, B. Hallmark & F.H. Chilton, Genomics in personalized nutrition: can you "eat for your genes"? Nutrients. 12;(2020) 3118.
- [12] N.M. Kassem, Y.A. Abdelmegid, M.K. El-Sayed, R.S. Sayed, M.H. Abdel-Aalla & H.A. Kassem, Nutrigenomics and microbiome shaping the future of personalized medicine: a review article, Journal of Genetic Engineering and Biotechnology. 21;(2023) 134.
- [13] P. Vyas, D. Singh, N. Singh, V. Kumar & H.S. Dhaliwal, Nutrigenomics: advances, opportunities and challenges in understanding the nutrient-gene interactions, Current Nutrition & Food Science. 14;(2018) 104-15.
- [14] H.H. Elsayed & R.T. Saleh, Review of: nutritional genomics and precision nutrition, Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. 64;(2024) 204-34.
- [15] A. Phalle & D. Gokhale, navigating next-gen nutrition care using artificial intelligence-assisted dietary assessment tools—A scoping review of potential applications, Frontiers in Nutrition. 12;(2025) 1518466.

- [16] J. Vijay, T. Dey & A.A. Shresta, Precision Nutrition Through Nutritional Informatics: Futuristic Technologies for Health Advancement, In Exploration of Transformative Technologies in Healthcare 6.0 (2025) 329-360. IGI Global Scientific Publishing.
- [17] M. Asif & P. Gaur, The Impact of Digital Health Technologies on Chronic Disease Management, Telehealth and Medicine Today. 10;(2025) 1.
- [18] D.M. Williams, H. Jones & J.W. Stephens, Personalized type 2 diabetes management: an update on recent advances and recommendations, Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 15;(2022) 281-95.
- [19] C.X. Ma, X.N. Ma, C.H. Guan, Y.D. Li, D. Mauricio & S.B. Fu, Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management, Cardiovascular Diabetology. 21;(2022) 74.
- [20] D.D. Wang & F.B. Hu, Precision nutrition for prevention and management of type 2 diabetes, The Lancet Diabetes & Endocrinology. 6;(2018) 416-26.
- [21] D. Mozaffarian, Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review, Circulation. 133;(2016) 187-225.
- [22] Y. Xiao, X. Xiao, X. Zhang, D. Yi, T. Li, Q. Hao, F. Zhang, X. Li & N. Wang, Mediterranean diet in the targeted prevention and personalized treatment of chronic diseases: evidence, potential mechanisms, and prospects, EPMA Journal. 15;(2024) 207-20.
- [23] J. Antwi, Precision nutrition to improve risk factors of obesity and type 2 diabetes, Current Nutrition Reports. 12;(2023) 679-94.
- [24] I. Paccoud, A.K. Leist, I. Schwaninger, R. van Kessel & J. Klucken, Socioethical challenges and opportunities for advancing diversity, equity, and inclusion in digital medicine, Digital Health. 10;(2024) 20552076241277705.
- [25] H. Ijaiya, Balancing Data Privacy and Technology Advancements: Navigating Ethical Challenges and Shaping Policy Solutions, Journal homepage: www.ijrpr.com ISSN. 2582;(2024) 7421.
- [26] E.B. Weiner, I. Dankwa-Mullan, W.A. Nelson & S. Hassanpour, Ethical challenges and evolving strategies in the integration of artificial intelligence into clinical practice, PLOS Digital Health. 4;(2025) e0000810.
- [27] A. Peirats & F. Arteaga, ETHICAL FRONTIERS IN THE DIGITAL AGE: THE COMPLEXITIES OF INFORMATION MANAGEMENT, In ICERI2024 Proceedings (2024) 1451-1456. IATED.
- [28] N. Alsaud, S. Saleh & M. Al Mubarak, Ethical Challenges in Technology Development, In Sustainable Digital Technology and Ethics in an Ever-Changing Environment: Volume 2 (2025) 79-93. Cham: Springer Nature Switzerland.
- [29] H. Ali, Artificial intelligence in multi-omics data integration: Advancing precision medicine, biomarker discovery and genomic-driven disease interventions, Int J Sci Res Arch. 8;(2023) 1012-30.